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Abstract It is shown analytically that the critical exponents for the 3D king model from a 
renormalized HamilioNao treatment, given by G i ~ i n ,  of he thermal averages appearing in an 
approximate difference equation formulaion. are exactly those of the spherical model ( y  = 2, 
(I = -1). These are compared to the values computed by %in: y r. 1.78, (I 2 0.1 I ,  which do 
not satisfy scaling. It is also noted that the behaviour W(A) cz W(l) +O(l  - for A 2 1- 
is reproduced by the Chadi-Cohen methcd of computation of r e c i p d  lattice sums only if the 
criterion 4: < 1 - A  is met, where pi are the Smallest special points brought in at the order of 
approximation considered. 

In a recent approximate method for the 3D king model phase diagram, Girvin (1978) claimed 
to derive the critical exponent values y N 1.78 and 01 N 0.11. to be compared favourably 
(considering the simplicity of the method) to the series expansion values y = 1.25 and 
01 = 0.125. It is shown here, analytically, that this theory in fact leads to the values y = 2 
and 01 = -1, which are the same as the exponents resulting from the spherical model. The 
method is presented by Girvin in two forms: form A, where all neighbouring sites to spin 
i in the renormalized Hamiltonian are assumed to be identically coupled to each other, and 
form B, where this assumption is not made. 

The operational equations of the theory may be summarized as follows. 

A. Simplerfom. The renormalized Hamiltonian I), which is connected to site i and 
may be used to evaluate thermal averages ( f ( 0 i ) )  of functions of 0; only, is given by 

where 19, = Cs Sc+s, (Sj = f l ) ,  j is the renormalized coupling constant and the summation 
over 6 is over nearest-neighbour lattice vectors. The original Hamiltonian is 

H = - $ J ~ S i S i + s - ~ h i S i  
i.8 i 

where hi is the sitedependent magnetic field and J is the coupling constant. The other 
equations of the theory are 
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is a zeneralization to A # 1 of the usual Watson sum (Wat! 1939), the sub! 
thatthe thermal average is to be oerformed with the renormalized Hamiltc 

E signifies 

J ( q ) / J ( O )  and where-fl= l/kT: A is defined by A = z(tanh2(BJ9i))H/(8i tanh(f lJ&))~ 
but is calculnted as in (3). (A = 1 corresponds to the critical temperature Tc.) The 
calculations in (2) and (3) are simply performed using 

I?, r(d = 

together with the identity 

where 'C,  are the usual combinatorial coefficients. The susceptibility x - 1/(1 - A) near 
Tc, as a function of T - T,, gives y through x - ( T  - Tc)-Y. Similarly, U2 = (Si&)/z. 
which is to within a factor of ( - J / 2 )  the energy per spin, is given in the theory by 

and gives (Y through dUz/dT - constant+(T-Tp near Tc. (2) yields 6.f as a function of 
A; (3) gives BJ in terms of ,K? and A. Thus, one may consider 7 to be a function of ,3 and 
one may also eliminate 7 to obtain A as a function of T .  It is evident that for the calculation 
of y .  it suffices to know that W(A) - W(1) + 0(1 - (see e.g. Joyce 1972, Lax 1955, 
Mannari and Kageyama 1968). for (2) then gives p j - ( # ? &  - (1 -A)'/', which, combined 
with (3) near T,: 1 -A = O(gj - ( f l . i ) , )+O(~J-(gJ)~) ,  then yields j3J-gJ - ( I  -h)1'2 
so that x - 1/(1 - A) - (T - Tc)-2, i.e. y = 2, as in the spherical model (see e.g. Amit 
1984). Similarly, from (7), U, - U,+O(l-A)'~2+O(l -A) - U,+O(T-T,)+O(T-Tc)z, 
so the specific heat, as T, is approached from above, is c - constant+O(T-T,). Therefore, 
OL = -1 in the theory. 

B. More complex form. The renormalized Hamiltonian f?, which is connected to site i 
and may be used to evaluate thermal averages of functions of the neighbouring spins of i, 
is now given by 

where 61 and 62 run over the nearest neighbours of i .  (8) replaces (1). It involves, formally, 
for the sc lattice as an example, 15 (= 6Cz) ja8&1 values (some of them being certainly 
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equal by symmetry). (3) still holds, but now as fi of (8) can no longer be regarded as a 
function of iy,, (2) (still valid) is replaced by the 15 pair correlation function equations 

where &,a, is the vector joining the spins 61 and 62. For the SC lattice, there are two non- 
equivalent pairs of nearest-neighbour sites: those separated by two lattice units and those 
separated by & lattice units; thus the 15 equations of (9) reduce to two equations for only 
two non-equivalent correlation functions (s&&), involving ody two non-equivalent jaI6>. 
Of course, the appropriate linear combination of (9) reduces to (2). Now the behaviour of 
the RHS of (9) for h N 1- is obtained from the small-q behaviour of the summation. For 
small q,  the cosine may be replaced by 1 + O(q2) to yield 

(sS,s&)H - ( s 6 i s & ) H . c  = 0 ( 1  -h)"'. (10) 

This is consistent with (2). This again leads to y = 2 and a = -1, in the same way as in 
form A. 

The determination of y = 2 for form A (though not for form B) has been checked 
by us computationally for the BCC lattice, using W(A) as given by Joyce (1972): W(h)  N 

W(l) - (Z3/'/n)(l - A)'/' for h N 1. y = 2 was indeed obtained. The coefficient 23/2/n 
in front of (1 - A)'!' was reproduced by us by actually perfonning the sum as an integral 
using the small-q expansion of the integrand, giving confidence in (10) for form B of the 
method. 

The result a N 0.11 of Girvin is internally consistent with his y N 1.78: x - 
1/(1-h) - (T - Tc)-'.78, with (I2 - 0(1 implies that c = dU2/dT - (T- Tc)-o~". 
Nevertheless, using d = 3 and q = 0 (note: in this method G(q) - q-' at T )  in the scaling 
law (2  - u)(2 - q )  = yd (see e.g. Amit 1984). one sees that this law is not satisfied by 
Girvin's values of y and CY. ( y  = 1.78 should lead to a = -0.67.) It is satisfied by our 
values. 

The reason that the critical exponents obtained here are the same as those for the 
spherical model is that (4) is the basic equation that governs the analytic properties of 
the system, and it is common to the spherical model and to the present model. The use 
of the renormalized Hamiltonian fi via (5) introduces, as demonstrated here, no further 
non-analytic behaviour. 

To understand the discrepancy between our y = 2, a = -1 result and the y N 1.78, 
CY N 0.11 result of Girvin, one must conjecture that the summations on the RHS of (9) 
were performed by Girvin computationally, using a method that did not sample a sufficient 
number of points in q-space. As an example of how this can occur, we report our attempt 
to compute W(h) - W(l) using the Chadixohen technique (Chadi and Cohen 1973, Macot 
and Frank 1990) instead of the Joyce formula. We used 1 - h near IO-', and the same 
order of approximation that gives W(1) to 10-figure accuracy. The result was consistently 
o(1 - h) rather than the correct 0 (1  - A)'/'. It was only when we took 1 - h near 
that we obtained the correct result. The reason for the former, incorrect result is as follows. 
From the corresponding q-space integral, the correct behaviour with 1 - A arises from the 
very-small-q portion of this integral. However, when q2 < 1, W(h)  has a summand like 
l/[(l - A) + aq'] where a is O(1). Thus, non-analytic behaviour can only appear if the 
special-point approximations are carried far enough so as to bring in q values satisfying 
the criterion q2 << 1 - A. The smaller the values of 1 - h chosen, the higher the order of 
approximation (and hence, exponentially, the amount of computer time) needed. 
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